

1. Anleitung: gebrochen rationale Funktionen am Beispiel:

Aufgabe jeweils: Maximale Definitionsmenge $D_{max} \subseteq \mathbb{R}$ und Lage und Art der Definitionslücken bzw. Nullstellen in Abhängigkeit von $k \in \mathbb{R}$.

1.1 Parameter im Zähler

$$f_k(x) = \frac{(x-1)(x-2)(x^2+k)}{(x-1)(x-2)(x^2-x-2)}, \ k \in \mathbb{R}$$

1. So weit wie möglich faktorisieren:

$$f_k(x) = \frac{(x-1)(x-2)(x^2+k)}{(x-1)(x-2)(x+1)(x-2)}$$

2. Maximale Definitionsmenge $D_{max} = \mathbb{R} \setminus \{Nullstellen des Nenners\}$:

$$D_{max} = \mathbb{R} \setminus \{-1; 1; 2\}$$

3. So weit wie möglich kürzen:

$$f_k(x) = \frac{x^2 + k}{(x+1)(x-2)}$$

4. Faktor aus Nenner verschwunden ⇒ behebbare Definitionslücke, Rest sind mögliche Polstellen:

x=1 ist behebbare Definitionslücke für alle $k \in \mathbb{R}$ (da Term (x-1) verschwunden ist) **Mögliche Polstellen**: x=-1 und x=2

- 5. Spezialfälle berechnen:
 - a) Einsetzten der möglichen Polstellen in den Zähler und diesen 0 setzen:

•
$$x = -1$$
 in Zähler: $(-1)^2 + k = 0 \Leftrightarrow k = -1$

b) Mit diesen gefundenen k-Werten jeweils den speziellen Funktionsterm berechnen:

$$\Rightarrow f_{-1}(x) = \frac{x^2 - 1}{(x+1)(x-2)} = \frac{(x-1)(x+1)}{(x+1)(x-2)} = \frac{x-1}{x-2}$$

- c) Werte ablesen
 - $\Rightarrow x=2$ ist Polstelle der Ordnung 1 und x=-1 ist behebbare Definitionslücke (ebenso wie x=1, siehe oben).
- **d)** Ebenso die weiteren möglichen Polstellen:

$$x = 2: (2)^{2} + k = 0 \Leftrightarrow \underline{k = -4}$$

$$\Rightarrow f_{-4}(x) = \frac{x^{2} - 4}{(x+1)(x-2)} = \frac{(x+2)(x-2)}{(x+1)(x-2)} = \frac{x+2}{x+1}$$

 $\Rightarrow x=-1$ ist Polstelle der Ordnung 1 und x=2 ist behebbare Definitionslücke.

- **6.** Die anderen Werte ohne die Spezialfälle betrachten, hier sind die möglichen Polstellen wirklich Polstellen:
 - $k \in \mathbb{R} \setminus \{-1; -4\}$: $\Rightarrow x = -1 \text{ und } x = 2 \text{ je Polstelle der Ordnung } 1.$

7. Mögliche Nullstellen (sind Nullstellen des Zählers):

- a) Zuerst die Spezialfälle von den Definitionslücken betrachten:
 - $\underline{k = -1} \Rightarrow f_{-1}(x) = \frac{x-1}{x-2} \Rightarrow x = 1 \notin D_{max}$ (!) d.h. keine Nullstelle! (Definitionslücke!)
 - $\underline{k = -4} \Rightarrow f_{-4}(x) = \frac{x+2}{x+1} \Rightarrow x = -2 \in D_{max}$ ist einzige und einfache Nullstelle.
- b) Dann die anderen Werte ohne die Spezialfälle betrachten: Mögliche Nullstellen:

Sei nun $k \in \mathbb{R} \setminus \{-1; -4\}$:

Mögliche Nullstellen: $x^2 + k = 0 \iff x^2 = -k \implies x_{1/2} = \pm \sqrt{-k}$

- \Rightarrow keine Nullstelle für $\underline{k \in \mathbb{R}^+} =]0; \infty[$
- $k=0 \Rightarrow x=0$ ist einzige und 2-fache Nullstelle.
- $k \in \mathbb{R}^- \setminus \{-1; -4\} \Rightarrow x_{1/2}$ sind die zwei einzigen Nullstellen, jeweils mit Vielfachheit 1.

Alternative 1 zu 5:

Polynomdivision, dann das gleiche Prozedere nur mit dem Rest: Vorteil: weniger Arbeit, falls Polynomdivision schon gemacht.

$$f_k(x) = 1 + \frac{x+k+2}{(x+1)(x-2)}$$

• x = -1 in Zähler des Restbruches: $(-1) + k + 2 = 0 \Leftrightarrow k = -1$

$$\Rightarrow f_{-1}(x) = 1 + \frac{x + (-1) + 2}{(x+1)(x-2)} = 1 + \frac{x+1}{(x+1)(x-2)} = 1 + \frac{1}{x-2}$$

- $\Rightarrow x=2$ ist Polstelle der Ordnung 1 und x=-1 ist behebbare Definitionslücke
- x=2 in Zähler des Restbruches: $(2)+k+2=0 \Leftrightarrow \underline{k=-4}$

$$\Rightarrow f_{-4}(x) = 1 + \frac{x + (-4) + 2}{(x+1)(x-2)} = 1 + \frac{x-2}{(x+1)(x-2)} = 1 + \frac{1}{x+1}$$

- $\Rightarrow x=-1$ ist Polstelle der Ordnung 1 und x=2 ist behebbare Definitionslücke
- $k \in \mathbb{R} \setminus \{-1; -4\}$
 - ⇒ x=-1 und x=2 je Polstelle der Ordnung 1.

Alternative 2 zu 5:

Zusätzlich den Zähler faktorisieren:

■ $\underline{k>0}$ \Rightarrow Zähler hat keine Nullstelle \Rightarrow x=-1 und x=2 sind Polstellen jeweils der Ordnung 1.

$$k \le 0 \Rightarrow f_k(x) = \frac{\left(x + \sqrt{-k}\right)\left(x - \sqrt{-k}\right)}{\left(x + 1\right)\left(x - 2\right)}$$

Direkt ersichtlich: Es gibt zwei Fälle in denen sich ein Faktor kürzen lässt:

$$k = -1 \text{ und } k = -4$$
:

oder mit Rechnung: $x + \sqrt{-k} = x + 1 \iff k = -1$ und so weiter ... alle Kombinationen durch.

• Für
$$\underline{k=-1}$$
 ist $f_{-1}(x) = \frac{(x+\sqrt{-(-1)})(x-\sqrt{-(-1)})}{(x+1)(x-2)} = \frac{(x+1)(x-1)}{(x+1)(x-2)} = \frac{x-1}{x-2}$

 $\Rightarrow x=2$ ist Polstelle der Ordnung 1 und x=-1 ist behebbare Definitionslücke

• Für
$$\underline{k=-4}$$
 ist $f_{-4}(x) = \frac{(x+\sqrt{-(-4)})(x-\sqrt{-(-4)})}{(x+1)(x-2)} = \frac{(x+2)(x-2)}{(x+1)(x-2)} = \frac{x+2}{x+1}$

 $\Rightarrow x=-1$ ist Polstelle der Ordnung 1 und x=2 ist behebbare Definitionslücke

•
$$k \in \mathbb{R}_0^- \setminus \{-1; -4\}$$

 $\Rightarrow x=-1$ und x=2 je Polstelle der Ordnung 1.

1.2 Parameter im Nenner

$$f_k(x) = \frac{(x-1)(x-2)(x^2-x-2)}{(x-1)(x-2)(x^2+k)}, \ k \in \mathbb{R}$$

1. So weit wie möglich faktorisieren:

$$f_k(x) = \frac{(x-1)(x-2)(x+1)(x-2)}{(x-1)(x-2)(x^2+k)}$$

2. Definitionslücken sind Nullstellen des Nenners:

Erst die klaren Fälle:

Sofort abzulesen $\Rightarrow x=1$ und x=2 sind immer Definitionslücken!

3. So weit wie möglich kürzen:

$$f_k(x) = \frac{(x+1)(x-2)}{x^2+k}$$

4. Spezialfälle berechnen:

a) Einsetzten der möglichen Nullstellen in den Nenner und diesen 0 setzen:

Mögliche Nullstellen des Zählers: x = -1 und x = 2.

•
$$x = -1$$
 in Zähler: $(-1)^2 + k = 0 \Leftrightarrow k = -1$

b) Mit diesen gefundenen *k*-Werten jeweils den speziellen – vollständig gekürzten – Funktionsterm berechnen:

$$\Rightarrow f_{-1}(x) = \frac{(x+1)(x-2)}{x^2 - 1} = \frac{(x+1)(x-2)}{(x-1)(x+1)} = \frac{x-2}{x-1}$$

c) Werte ablesen:

$$\Rightarrow x=1$$
 und $x=-1$ sind zusätzliche Definitionslücken,

also
$$D_{max} = \mathbb{R} \setminus \{-1; 1; 2\}$$
 , es gibt somit 3 Definitionslücken,

wobei x=-1 und x=2 behebbar sind und x=1 Polstelle der Ordnung 1.

d) Ebenso die weiteren möglichen Polstellen:

•
$$x = 2$$
 in Nenner: $(2)^2 + k = 0 \implies k = -4$

$$\Rightarrow f_{-4}(x) = \frac{(x+1)(x-2)}{x^2-4} = \frac{(x+1)(x-2)}{(x+2)(x-2)} = \frac{x+1}{x+2}$$

$$\Rightarrow$$
 x=2 und x=-2 sind zusätzliche Definitionslücken,

also
$$D_{max} = \mathbb{R} \setminus \{-2; 1; 2\}$$
, es gibt somit 3 Definitionslücken,

wobei x=1 und x=2 behebbar sind und x=-2 Polstelle der Ordnung 1.

5. Die anderen Werte ohne die Spezialfälle betrachten:

$$k \in \mathbb{R} \setminus \{-1; -4\}$$
:

Mögliche zusätzliche Definitionslücken:

$$x^2 + k = 0 \Leftrightarrow x^2 = -k \Rightarrow x_{1/2} = \pm \sqrt{-k}$$

- Für $\underline{k \in \mathbb{R}^+}$ keine Lösung ⇒ keine weitere Definitionslücken ⇒ $D_{max} = \mathbb{R} \setminus \{1; 2\}$ ⇒ $f_k(x) = \frac{(x+1)(x-2)}{x^2+k}$ ⇒ die einzigen 2 Definitionslücken x=1 und x=2 sind behebbar.
- $\underline{k=0} \Rightarrow f_0(x) = \frac{(x+1)(x-2)}{x^2} \Rightarrow D_{max} = \mathbb{R} \setminus \{0; 1; 2\}$.

Von den drei Definitionslücken sind x=1und x=2 behebbar, x=0 ist Polstelle der Ordnung 2.

•
$$\underline{k \in \mathbb{R}^- \setminus \{-1; -4\}} \Rightarrow f_k(x) = \frac{(x+1)(x-2)}{(x+\sqrt{-k})(x-\sqrt{-k})} \text{ und } D_{max} = \mathbb{R} \setminus \{1; 2; -\sqrt{-k}; \sqrt{-k}\}.$$

Von den vier Definitionslücken sind x=1 und x=2 behebbar, $x=-\sqrt{-k}$ und $x=\sqrt{-k}$ sind jeweils Polstellen der Ordnung 1.

6. Nullstellen

Spezialfälle der Nullstellen ergeben sich aus den Spezialfällen der Definitionslücken unter Punkt 4!

Beachte: Aufpassen, ob Nullstelle auch in D_{max} liegt!

 $x = 2 \notin D_{max}$ für alle $k \in \mathbb{R}$, somit auch **nie** Nullstelle von f_k .

- $\underline{\mathbf{k} = -1} \Rightarrow f_{-1}(x) = \frac{x-2}{x-1} \Rightarrow D_{max} = \mathbb{R} \setminus \{-1; 1; 2\} \Rightarrow \text{ keine Nullstellen } (x = 2 \notin D_{max}!)$
- $\underline{\mathbf{k} = -\mathbf{4}} \ \Rightarrow \ f_{-4}(x) = \frac{x+1}{x+2} \ \Rightarrow \ D_{\max} = \mathbb{R} \setminus \{-2\,;\,1\,;\,2\} \ \Rightarrow \ x = -1 \ \text{ist einfache und einzige NST}.$
- $\underline{k \in \mathbb{R} \setminus \{-1; -4\}} \Rightarrow f_k(x) = \frac{(x+1)(x-2)}{x^2+k} \Rightarrow x = -1$ ist einfache und einzige Nullstelle $(x=2 \notin D_{max}!)$.