

Bestimmung der Gravitationskonstante G nach Cavendish (1731-1810): Beschleunigungsmethode

In einer Versuchsanordnung beschleunigen zwei kleine Bleikugeln ($m=15\,g$) aus der Ruhe heraus zu zwei großen Bleikugeln ($M=1.5\,kg$) hin, dabei wird der Mittelpunktsabstand $R=47\,mm$ als konstant angenommen (siehe Rückseite).

Aufgaben

1.1 Bestimmen Sie die Gravitationskraft zwischen je einer großen und kleinen Bleikugel und die daraus resultierende Beschleunigung mit dem Tabellenwert für *G*.

Lösung:

$$F = G \cdot \frac{M \cdot m}{R^2} = 6,67384 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2} \cdot \frac{1,5 kg \cdot 0,015 kg}{(0,047 m)^2} \approx 6,8 \cdot 10^{-10} N = 0,68 nN$$

1.2 Berechnen Sie den Weg s, den eine kleine Kugel in 90 s zurücklegt.

Lösung:

Konstante Beschleunigung und keine Anfangsgeschwindigkeit angenommen:

$$s = \frac{1}{2}at^2 = \frac{1}{2} \cdot \underbrace{\frac{F}{m}}_{a} \cdot t^2 = \frac{1}{2} \cdot G \cdot \frac{Mm}{R^2} \cdot \frac{1}{m} \cdot t^2 = \frac{G \cdot M}{2R^2} \cdot t^2$$

$$s = \frac{6,67384 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2} \cdot 1,5 \, kg}{2(0,047 \, m)^2} \cdot 90 \, s \approx 1,8 \cdot 10^{-4} \, m = 0,18 \, mm$$

1.3 Entwickeln Sie eine Formel zur Bestimmung von *G* aus dem Ansatz zu Aufgabe **1.1**.

Lösung:

$$m \cdot a = F = G \cdot \frac{M \cdot m}{R^2} \Rightarrow G = \frac{a \cdot R^2}{M}$$

 $\frac{a}{2}$ ist die Steigung der Geraden die sich durch Messung und Auswertung aus dem t^2 -s - Diagramm ergibt.

2 Wegvergrößerung durch Lichtzeiger: (siehe Rückseite)

Über die Geometrie der Anordnung lässt sich der sehr kleine, tatsächlich zurückgelegte Weg s einer kleinen Kugel zum Weg s des Lichtpunktes auf der Wandskala vergrößern.

Beschreiben Sie Ihrem Nachbarn, wie der Weg des Lichtpunktes entsteht (Reflexionsgesetz), und begründen Sie so, dass gilt: $s=\frac{r}{2\cdot L}\cdot S$, mit $r=50\mathrm{mm}$,

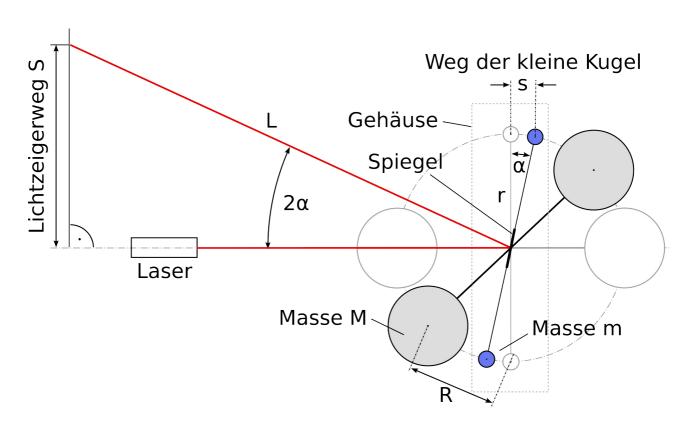
halber Abstand der kleinen Kugeln und $L=8,10\,m$, Abstand zwischen Spiegel und Wandskala.

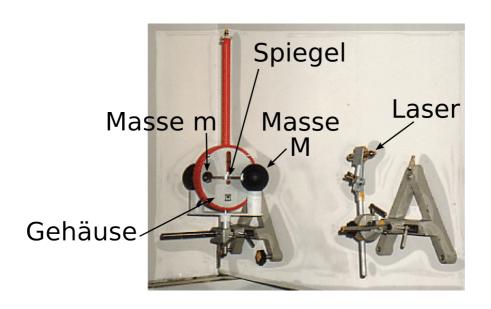
Lösung:

Für Winkel <1 $^{\circ}$ ist der Fehler im 0.01%) Bereich, d.h $_S$ kann dem tatsächlichen Weg (ein Bogen) gleichgesetzt werden.

Dann nur noch Strahlensatz anwenden.

Versuchsdurchführung:


Bei einer Messung von *S* über der Zeit wurden folgende Werte aufgenommen:


t in s	15	30	45	60	75	90
$t^2 \ln s^2$	225	900	2025	3600	5625	8100
S in cm	0,25	0,75	1,5	3,0	5,0	6,0
s in m	$2,50\cdot10^{-3}$	$7,50\cdot10^{-3}$	$1,50\cdot10^{-2}$	$3,00\cdot10^{-2}$	5,00.10-2	$6,00\cdot10^{-2}$

Auswertung

- **2.1** Berechnen Sie die Wege *s* und ergänzen Sie die Tabelle.
- **2.2** Berechnen Sie die benötigten Werte und bestimmen Sie durch ein t^2 -s-Diagramm die Beschleunigung a und begründen Sie Ihr Vorgehen.
- **2.3** Berechnen Sie nun die Gravitationskonstante *G* aus den Daten des Versuches.

