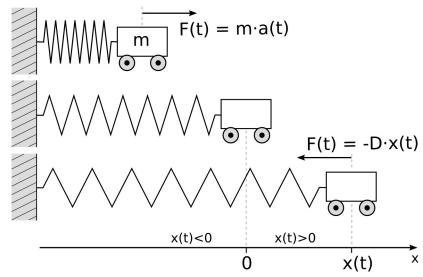


Schwingungen

1. Harmonische Schwingung

1.1 Herleitung der Differentialgleichung



In obiger Skizze ist:

t: Zeit

 $\mathbf{x}(t)$ Auslenkung der Masse vom Gleichgewichtszustand (Feder entspannt) in Abhängigkeit von der Zeit t

 $F\left(t\right)$ Rückstellende Federkraft in Abhängigkeit von $x\left(t\right)$ und somit von t. Es gilt: $F\left(t\right)=-D\cdot x\left(t\right)$ (Hooksches Gesetz).

Nach Newton ist nun $F(t) = m \cdot a(t) = m \cdot \ddot{x}(t)$

Somit:
$$-D \cdot x(t) = F(t) = m \cdot \ddot{x}(t) \Leftrightarrow x(t) = -\frac{m}{D} \ddot{x}(t)$$

Wenn wir vorrübergehend $\frac{m}{D} = 1$ wählen und die Einheiten vernachlässigen, dann ergibt sich: $x(t) = -\ddot{x}(t)$

Es wird also im wesentlichen eine Funktion gesucht, die 2-mal abgeleitet wieder die Funktion selbst ergibt, nur mit negativem Vorzeichen.

Eine solche Funktion ist z.B. $\sin(t)$, denn $(\sin(t))^{"} = -\sin(t)$.

Bemerkung: $A \cdot \sin(t - \varphi_0)$ oder $\cos(t) = \sin(t + \frac{\pi}{2})$ ginge auch.

Etwas Nachdenken und Probieren ergibt $x(t) = \sin\left(\sqrt{\frac{D}{m}} \cdot t\right)$ als eine mögliche Lösung,

und damit allgemein $x(t) = A \cdot \sin \left(\sqrt{\frac{D}{m}} \cdot t + \varphi_0 \right)$ denn:

$$\begin{split} \ddot{x}\left(t\right) &= \left[A \cdot \sin\left(\sqrt{\frac{D}{m}} \cdot t + \varphi_0\right)\right] = \left[A \cdot \cos\left(\sqrt{\frac{D}{m}} \cdot t + \varphi_0\right) \cdot \sqrt{\frac{D}{m}}\right] = -A \cdot \sin\left(\sqrt{\frac{D}{m}} \cdot t + \varphi_0\right) \cdot \sqrt{\frac{D}{m}} \cdot \sqrt{\frac{D}{m}} \\ &= -\frac{D}{m} \cdot \underbrace{A \cdot \sin\left(\sqrt{\frac{D}{m}} \cdot t + \varphi_0\right)}_{=x(t)} = -\frac{D}{m} \cdot x(t) \end{split}$$

Mit der Kreisfrequenz $\omega := \sqrt{\frac{D}{m}}$ ergibt sich die Schwingungsdauer (zeitliche Periodenlänge!) mit $T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{D}{m}}} = 2\pi\sqrt{\frac{m}{D}}$.